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Multidimensional Hawkes processes can model excitations in a network. Ai,s(t) depends only on ;s and a single row of A * : e I Switched Multivariate Model
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= e State 1 - Innovation events at node 1. Excitations at node 2.
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0 2 4 6 8 10 e State 2 - Innovation events at node 2. Excitations at node 1.
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Switched Model

Real World Experimentation

The behaviour of systems can change with time. This can be modeled as the _ . . _ .
effect of a change in the underlying parameterization which corresponds to the Dataset consists of traffic sensor data over the span of two years from a network of 7 intersections in Montgomery County, Maryland. The data is logged as a

state of the system. time-stamped event every time a vehicle crosses either the Inbound Lane sensors or the Outbound Lane sensors. Other information captured with the logged event
are: speed (mph), occupancy time (s), current phase (red / yellow / green), and time to end of phase(s).
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I e We try to model the data using
~0e two kernels, a shorter one and
a longer one. The kernel last-
ing for a shorter period of time
- 0.4 models strong influences only for
the right lane sensors. The longer
I_ v kernel picks up the interactions in
0.0 all, right, through and left lanes.
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A recovered for State 1 A recovered for State 1 e In State 1, both the kernels model

the excitation between 3-16 and

1o 8-15 sensors. The longer one does

I a better job for the through lane
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sensors 14-12 and left lane sensors
13-4.
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e In State 2, the longer kernel picks

up strong values for sensors 6-4
and 7-4.
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