
Active learning

• Involves adaptively querying labels for the most
informative data points to improve label efficiency

• Most querying strategies are often computationally
expensive and usually involve optimization over a
discrete space which leads to a lower accuracy

• Instead, we can directly synthesize the most
informative samples which can be very efficient and
also optimize over a continuous space which can
lead to a better model performance

• If the problem is constrained by the available dataset
- How best to approximate the optimal pair of
synthesized points?

Experiment results

Query synthesis

Query response model

• Estimate a preference vector based on
responses to preferences over pairs of items

• Responses can have different levels of associated
confidence

w ∈ ℝd

Maximization of mutual information

N = 1000 N = 25

Learning human preferences

Active query synthesis for preference learning
Namrata Nadagouda, Mark A. Davenport

First compute
the optimal
hyperplane

Then compute
the optimal pair

of points

Select such that (p̃, q̃) ap̃q̃ = arg max h(∥a∥)

P(p ≺ q) =
1

1 + e−(h(∥apq∥)(a⊤
pqw − τpq))

 represents the bisecting hyperplane

 is the response confidence function

(apq, τpq)

h(∥apq∥)

User estimated as the mean
of the posterior distribution

I (Y; W | (a, τ)) = H (Y | (a, τ)) − 𝔼𝔼
W

[H(Y |W, (a, τ))]

p q

Ideal distance -
confident response

Items too close

Items too far

Response - not confident

Equi-probable
responses

Direction of
maximum variance

Response confidence function

Simulated dataset - Items , user , number of items 𝒟𝒟 ∼ U[−4, 4]4 W ∼ U[−1, 1]4 N

Next steps

• Analyze the deviation of Approx. I and
Approx. II from the optimality criteria

• Conduct experiments with real world data

ŵ

Result metrics
• Mean Squared Error -

MSE()

• Kendall Tau distance -
measures dissimilarity
between rankings of
items w.r.t and

w, ŵ

w ŵ

Approximation methods

• Approximation I

• Approximation II

p1 = arg min
p ∈ 𝒟𝒟

∥p̃ − p∥

q2 = arg min
q ∈ 𝒟𝒟

∥q̃ − q∥

Let 𝒫𝒫 = kNN(p̃) and 𝒬𝒬 = kNN(q̃)

(p2, q2) = arg max
p*∈𝒫𝒫, q*∈𝒬𝒬

I (Y; W | (p*, q*))

Results

• Method II achieves a much better
performance than method I

• Performance of II deteriorates significantly
as the number of items decreases

