
Active  learning

• Involves adaptively querying labels for the most 
informative data points to improve label efficiency 

• Most querying strategies are often computationally 
expensive and usually involve optimization over a 
discrete space which leads to a lower accuracy   

• Instead, we can directly synthesize the most 
informative samples which can be very efficient and 
also optimize over a continuous space which can 
lead to a better model performance 

• If the problem is constrained by the available dataset 
- How best to approximate the optimal pair of 
synthesized points?

Experiment results

Query synthesis

Query response model

• Estimate a preference vector  based on 
responses to preferences over pairs of items 

• Responses can have different levels of associated 
confidence
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Maximization of mutual information
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User estimated as the mean 
of the posterior distribution
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Simulated dataset - Items ,  user , number of items  𝒟𝒟 ∼ U[−4, 4]4 W ∼ U[−1, 1]4 N

Next steps 

• Analyze the deviation of Approx. I and 
Approx. II from the optimality criteria 

• Conduct experiments with real world data
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Result metrics 
• Mean Squared Error - 

MSE( ) 

• Kendall Tau distance - 
measures dissimilarity 
between rankings of 
items w.r.t  and  

w, ŵ

w ŵ

Approximation methods 

• Approximation I  

 

• Approximation II 

    

p1 = arg min
p ∈ 𝒟𝒟

∥p̃ − p∥

q2 = arg min
q ∈ 𝒟𝒟

∥q̃ − q∥

Let 𝒫𝒫 = kNN( p̃) and 𝒬𝒬 = kNN(q̃)

(p2, q2) = arg max
p*∈𝒫𝒫, q*∈𝒬𝒬

I (Y; W | (p*, q*))

Results 

• Method II achieves a much better 
performance than method I 

• Performance of II deteriorates significantly 
as the number of items decreases


