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Involves adaptively querying labels for the most
informative data points to improve label efficiency

Most querying strategies are often computationally
expensive and usually involve optimization over a
discrete space which leads to a lower accuracy

Instead, we can directly synthesize the most
informative samples which can be very efficient and
also optimize over a continuous space which can
lead to a better model performance

If the problem is constrained by the available dataset
- How best to approximate the optimal pair of
synthesized points?

Learning human preferences

e Estimate a preference vector w € R? based on
responses to preferences over pairs of items

e Responses can have different levels of associated
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Experiment results

Simulated dataset - Items 9 ~ U[—4,4]% user W ~ U[-1, 1]*, number of items N

o
I

o
w

o

N
Mean Squared Error

Mean Squared Error
Kendall Tau distance

o
=

o
N

o
w

o
N

Kendall Tau distance

o
[

0 20

N

40 60 80 100

Number of queries

100 0 20

N = 1000

Approximation methods

40 60 80

Number of queries

0

20

Active synthesized queries
Approximation | queries
Approximation Il queries
Active discrete queries
Random queries

e Approximation I
p,=arg min ||p —pl|

PED Result metrics
= arg min |(|g —
1 qge o Ig =4l e Mean Squared Error -

MSE(w, #
e Approximation II (w,w)

Let &» = kKNN(p) and @ = kNN(§)
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e Kendall Tau distance -
measures dissimilarity
between rankings of

items w.r.t w and w
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Results

e Method II achieves a much better
performance than method I

e Performance of II deteriorates significantly
as the number of items decreases

Next steps

e Analyze the deviation of Approx. I and
Approx. II from the optimality criteria

e Conduct experiments with real world data




